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Abstract. We have measured the pressure dependence of the Knight shift and the 
linewidth of the nuclear magnetic resonance (NMR) signals of 'Li (up to 8 GPa) and 
23Na (up to 6 GPa) in metallic lithium and sodium, respectively, a t  room tempera- 
ture using a diamond anvil cell (DAC). It is concluded that diffusion is hindered by 
pressure; the diffusion coefficients and the activation volumes are estimated. In Li, 
diffusion increases a t  the BCC-FCC phase transition. The Li Knight shift increases 
with rising pressure up to the phase transition, where a marked reduction is observed 
which might be due to a drastic decrease of the s character of the conduction electron 
wave function. The N a  shift decreases up to about 1.7 GPa and then increases. The 
Knight shift data are compared with theories that exist for pressures up to 1 GPa. 
By extrapolating existing values for the Pauli susceptibility, the pressure dependence 
of the spin density a t  the nuclear site is estimated. 

1. Introduction 

Nuclear magnetic resonance (NMR) is a well established method for studying properties 
of metals on the atomic scale (e.g. Winter 1971). A classical example is the Knight 
shift: the displacement of the NMR frequency observed in a metal with respect to 
the frequency measured in a non-metallic reference compound. Since the shift arises 
from the interaction between nuclear magnetic moments and conduction electrons, it is 
possible to probe local magnetic properties of the metal. The experimental results may 
be used to  test the validity and accuracy of theoretical approaches to the many-electron 
problem we face in metals. A second quite different example is the study of atomic 
jump processes in self-diffusion (Mehrer 1978) either by measuring various relaxation 
times (e.g. Wolf 1977, 1978) or by directly determining the diffusion coefficient of the 
metal ions by the pulsed field gradient technique (e.g. Mali et  a1 1988). 

The overwhelming number of NMR investigations in metals is performed at  ambient 
pressure. This is regrettable since pressure as well as temperature is one of the most 
important thermodynamic variables in solid state physics and high-pressure studies 
can provide a wealth of additional information. These experiments were pioneered by 
Benedek and Kushida (1958) who were the first to measure the pressure dependence 
of alkali metal Knight shifts; more accurate remeasurements of the Li and Na shifts 
were performed by Kushida and Murphy (1980). All these experiments were done in 
the pressure range below 1 GPa using conventional techniques. 

Extension of the NMR experiments to higher pressures is hampered by the fact that 
the pressure can no longer be generated by simply compressing the fluid in the NMR 
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probe head by means of a pressure generator (e.g. Huber el a1 1984). Instead one 
has to  resort to  other methods such as the diamond-anvil cell (DAC) technique which 
became, in the 1970s, the most powerful tool for high-pressure research in solid state 
physics (e.g. Jayaraman 1983, Minomura 1985, Jayaraman 1986). We have recently 
built a DAC for solid state NMR studies (Bertani e t  a1 1990) and have investigated the 
room temperature NMR of Li and Na in metallic samples a t  pressures above 1 GPa.  
The only other DAC device for solid state NMR studies we are aware of has been built 
by Conradi et a1 (1987). 

In this paper we report the first measurements of both the Knight shift and the 
linewidth of the 7Li and 23Na NMR signals a t  pressures up to  8 and 6 GPa,  respectively. 
In section 2 we will briefly describe the experimental technique. In section 3 we will 
present and discuss the linewidth data. I t  will be shown how self-diffusion can be 
hindered by pressure and how diffusion changes a t  the BCC-FCC phase transition in 
Li. From the linewidth data  we will estimate the Li and N a  diffusion coefficients. The 
Knight shift da t a  including the abrupt change a t  the BCC-FCC phase transition, will be 
presented in section 4. They will be looked a t  in the light of recent theoretical studies 
which take into account core-polarization contributions t o  the contact interaction. 
The data  will be used to  estimate electron spin densities a t  the nuclear sites. 

2. Experimental technique 

All pressure experiments were performed at  room temperature using an NMR pulse 
spectrometer with a 4.7 T superconducting magnet. Details of the DAC are described 
elsewhere (Bertani et a1 1990). We use anvil flats of 1 mm2 and rhenium gaskets. The 
radio frequency field of a special saddle coil parallel to  the gasket surface dips into 
the sample hole of 0.7 m m  diameter and 0.15 mm thickness. The Li and N a  samples 
(99.9% purity) consist of spheres (diameter 10 to  30 pm) in mineral oil serving as 
pressure medium and preventing corrosion. 

The pressure is measured by the ruby fluorescence method (e.g. Jayaraman 1983). 
A tiny chip of ruby (Cr3+-doped A1,03) placed in the mineral oil adjacent to  the NMR 
sample is excited by an argon laser. The  shift of the emission lines with pressure is 
used as pressure calibration with a precision of about k 0.1 GPa.  The absence of any 
broadening of the fluorescence lines proves that the pressure is hydrostatic. Pressures 
can be measured and can be increased without removing the DAC from the magnet. 

The NMR signals (so-called power spectrum) were determined by Fourier transfor- 
mation of M lo5 accumulated free induction decay signals. These signals are broadened 
due to magnetism present in the DAC (especially in the rhenium gasket) and the cryo- 
stat .  At room temperature and ambient pressure the full width of the power spectrum 
a t  half height, Sv, is 2100 and 950 Hz for 7Li and 23Na, respectively, while the intrinsic 
linewidths are probably below 160 and G O  Hz, respectively (Gutowsky and McGarvey 
1952). 

The Knight shift K of an NMR line is defined as 

where v, and v, are the NMR frequencies measured in the metal and in a non-metallic 
reference compound, respectively, with the external magnetic field kept constant. 
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Figure 1. Pressure dependence of the linewidth 
Eu (full width at  half height) of the NMR power 
spectrum of 'Li and 23Na at  room temperature. 
The vertical dashed line separates the BcC and 
FCC phase of Li. The solid and broken curves are 
plots of equations (10) and (9), respectively. The 
low pressure Na data are falsified by magnetic 
inhomogeneities. 
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Figure 2. Pressure dependence of the 7Li self- 
diffusion coefficient a t  room temperature. The 
BCC-FCC phase transition is indicated by the ver- 
tical broken line. The full line in the BCC phase 
is an exponential fit to the data. 

When determining the Knight shift K ( p )  for a particular pressure p ,  every measure- 
ment of the NMR frequency vm(p) was preceded by a determination of the frequency 
vm(0) a t  normal pressure. Defining a frequency shift AV by 

= vrn(p) - vm(0)  (2) 

equation (1) yields the following expression for the Knight shift a t  pressure p :  

K ( p )  = K ( 0 )  + [Av(p)/v,(O)][l+ IC(O)] (3) 

For the Knight shift K ( 0 )  a t  normal pressure we have used the literature values 
0.026(2)% for Li and 0.113(1)% for N a  (Carter et a1 1977). A determination of K ( 0 )  
for N a  carried out in our DAC using NaCl as a reference agrees with the literature 
value. 

3. Linewidth: results and discussion 

3.1. Results and origin of linewidth 

The pressure dependence of the linewidth 6v (full width a t  half height) of the NMR 
power spectrum of 7Li and 23Na is plotted in figure 1. Up to  about 1 GPa  the 
values are strongly falsified by the magnetic inhomogeneities mentioned in section 2.  
In both metals the linewidth increases with pressure up to about 5 G P a  and then 



7914 R Bertani et a1 

becomes nearly constant at  a value of 17 and 7.5 kHz for Li and Na, respectively. The 
BCC-FCC phase transition in Li at  6.3 GPa is accompanied by a drastic drop of the 
linewidth to  1.5 kHz. If the external contribution to the linewidth (due to magnetic 
inhomogeneities) does not change with pressure, this result implies that the intrinsic 
linewidth in the FCC phase just above the transition is much smaller than the width at  
normal pressure in the BCC phase. Further increase of the pressure in the FCC phase 
increases 6v only slightly. 

What are the mechanisms responsible for the linewidth we observe? In perfect Li 
and N a  crystals no electric field gradients (EFG) and no anisotropic Knight shifts are 
present at the nuclear sites because of cubic symmetry. However, the cubic symmetry 
can be disturbed by non-hydrostatic pressure that may create strain. Given the width 
of the ruby fluorescence lines we estimate the maximum pressure gradient across the 
crystallographic unit cell of Li or Na to be only about 3 kPa. Using experimental 
pressure-volume isotherms (Swenson 1966, Grover e t  a1 1969, Vaidya e i  a1 1971, 
Olinger and Shaner 1983) the resulting change of the length of the unit cell is only 
0.1 ppm. Therefore any strain-related EFG is completely negligible. This conclusion 
is supported by the fact that no so-called spin-echo signal could be detected at  any 
pressure, since spin-echoes require the presence of static broadening effects such as, 
for instance, the above-mentioned EFGs. 

On the same grounds we can rule out a contribution from anisotropic Knight shift 
and, finally, pressure-induced dislocations. Dislocations would cause large quadrupolar 
broadening. However, the linewidths we observe never exceed the dipolar width (see 
next section). We thus exclude the presence of a high density of dislocations. Since 
NMR measures bulk properties a small amount of dislocations could escape detection. 
We therefore conclude that the origin of the linewidth is dipolar spin-spin interaction 
of the nuclear moments and the coupling of the nuclear spins with conduction electrons 
although the latter contribution is small (Gutowsky and McGarvey 1952). 

3.2. Pressure inhibited motional narrowing 

It is well known (Gutowsky and McGarvey 1952) that the linewidth is considerably 
narrowed by translational diffusion of the metal ions if the local field at  the nuclear 
sites fluctuates at  a rate 1 / ~  which is larger than the rigid lattice linewidth. It is 
common practice to correlate the narrowed linewidth 6v of the resonance line (the 
power spectrum in our case) with the rigid lattice linewidth 6vRL which is the linewidth 
in the absence of any line narrowing process, by the relation (Abragam 1961) 

where the numerical factor Q is of the order unity. 
We have remeasured the temperature dependence of 6v for Li and N a  at  normal 

pressure outside the high-pressure device. The rigid lattice linewidths byRL determined 
at  low temperatures are 14.7 kHz for Li and 4.5 kHz for N a .  Line narrowing sets in 
at  about 240 K for Li and at 180 I< for Na; it is complete at about 320 K for Li and 
220 K for Na. The narrowed linewidth data agree with the ‘zero pressure’ data of 
figure 1 if the effect of the magnetic inhomogeneities mentioned above is taken into 
account. The increase of 6v with rising pressure thus suggests a decrease in motional 
narrowing, in other words translational diffusion is hindered by pressure. 

How does the hindrance of diffusion depend on pressure? To answer the question 
one must know the rigid lattice linewidth as a function of pressure p ,  6vRL(p). One 
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way to obtain this quantity is to proceed from the second moment of the resonance 
line defined as (Abragam 1961) 

where f(v) is the normalized lineshape function having a maximum at vo. The poor 
signal-to-noise ratio of the Li and N a  signals neither allows a reliable experimental 
determination of the second moment nor a statement whether f(v) is Gaussian or 
Lorentzian. We assume f(v) to be Gaussian in order to evaluate equation (5) exactly. 
This yields the following relation for the full width of the power spectrum at pressure 
p in a rigid lattice: 

Svkc,'(p) = 2 x 1.69 d G  
where the index (G) reminds us that this expression is valid for a Gaussian only. The 
rigid lattice second moment for a polycrystalline cubic sample is given by (Losche 
1957) 

(aukL)  = (1/12.ir2)~, y4 h2 I ( I  + ~ ) / d ( p ) ~  (7) 

where C, = 52.281 and C, = 208.14 for a BCC and a FCC lattice, respectively; y is 
the gyromagnetic ratio of the nuclear spin I ( I  = 3/2 for both Li and Na).  d ( p )  is the 
cubic lattice constant at  pressure p which is related to the lattice constant at ambient 
pressure, d(O), by 

d3(P) V ( 0 )  = d3(0 )  V(P) 

SYkG)(P) = c, 7 ,  h [V(O)/V(P)l d-3 (0> .  

(8) 

where V ( p )  is the sample volume. Combining equations (6), (7) and (8) finally yields 

(9) 

The coefficient C, is 5.121 and 10.22 for BCC and FCC lattices, respectively, and spin 
3/2 nuclei. The factor V(O)/V(p) may be calculated from room temperature pressure- 
volume isotherms (Swenson 1966, Grover et a1 1969, Vaidya et a1 1971, Olinger and 
Shaner 1983). A plot of equation (9) is given by the broken lines in figure 1. 

An alternative to determine 6vRL(p) without the assumpt,ion of a Gaussian line- 
shape is a 'scaling' of the low temperature linewidth. Using the ambient pressure rigid 
lattice linewidth measured at  low temperatures (see above) and taking into account 
the volume dependence of the lattice constant by the factor V(O)/V(p),  we obtain the 
expression: 

"RL(p) = 6vRL(o) IV ( O ) /  v(P)l  * (10) 

Equation (10) is plotted as a solid curve in figure 1. 
We note that the rigid lattice linewidths for a Gaussian lineshape (equation (9)) 

are always slightly smaller than the linewidths SvRL(p) as given by equation (10). For 
Li in the BCC structure the experimental values do not quite approach the rigid lattice 
'limit' at  high pressures: Sv stays about 3 kHz below SvRL given by equation (10). 
On the other side, for N a  the experimental linewidth data approach the theoretical 
limit predicted by equation (10). We thus conclude that in N a  at  about 5 GPa 
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diffusion is hindered to  such an extent that  it does not narrow the NMR line any 
more. The line itself is non-Gaussian since its width a t  high pressure is larger than 
the value given by equation (9) for a Gaussian. In Li, however, a t  pressures just 
below the phase transition, diffusion is less hindered: the phase transition occurs 
before the lattice has become completely rigid as defined by NMR. The change of the 
rigid lattice second moment and hence the linewidth Svg’ a t  the BCC-FCC phase 
transition is negligible (broken line in figure l(a))  because the change in volume is 
only 0.25% (Olinger and Shaner 1983) which compensates the change of the factor C, 
in equation (7). Experimentally, however, the linewidth is considerably narrowed by 
the phase transition; this suggests strong diffusion in the high-pressure phase. 

3.3. Calculation of diflusion coeficient 

Having interpreted the pressure induced line-broadening as the result of hindered 
diffusion we can estimate the self-diffusion coefficient D for isotropic diffusion if we 
identify T of equation (4) as the mean residence time of a jumping metal ion. Then 
D is given by the modified Einstein equation 

D = f(r2)/6. (11) 

where (?) is the mean square jump distance and f is the spatial correlation factor. 
For diffusion via monovacancies we have f = 8/11 (Seeger and Mehrer 1970). 

The numerical evaluation of D goes as follows. Equation (10) provides the volume- 
dependent rigid lattice linewidths 6vRL(p) for Na and the BCC phase of Li; for the 
Li FCC phase we use the extrapolated values of the BCC phase (see figure 1). These 
values together with the actually measured linewidths S v ( p )  are inserted into equation 
(4). This equation then is solved for 7, which is inserted into equation (11). For 
( r 2 )  we take the pressure dependent nearest neighbour distance in a BCC or FCC 
lattice calculated from compressibility data  (Grover et a1 1969). The results for the 
Li diffusion coefficient are plotted in figure 2. 

The Li diffusion coefficient decreases exponentially with rising pressure up to about 
4.2 GPa  and then remains constant up to the BCC-FCC phase transition. The tran- 
sition enhances the diffusion coefficient by a factor of about 15. Further increase of 
pressure seems to  lower the diffusion constant again. 

The reliability of this estimate can be checked by comparing the diffusion coefficient 
a t  ambient pressure with a value determined directly. We have previously measured 
the 6Li and 7Li diffusion coefficients between 350 and 454 K a t  normal pressure by 
the NMR pulsed field gradient technique (Mali e t  a1 1988). D obeys an Arrhenius law 
with an average activation energy of 0.561 k 0.002 eV. Extrapolating those data  to  
300 K yields for 7Li the value 6 x m2 s-l , which is in reasonable agreement with 
the present value 1.2 x m2 s-’, keeping in mind the relatively crude evaluation 
method. The  last value is also in fair agreement with the tracer diffusion coefficient 
8 x m2 s-l (average for 6Li and 7Li) measured by mass spectroscopy (Lodding 
et a1 1970). 

From the pressure variation of the diffusion coefficient one can calculate the acti- 
vation volume AV, associated with each atomic jump process according to  

AV, = -kT dlnD/dp (12) 

For pressures up to  4 GPa  we obtain an activation volume of about 2.1 x m3 
(1.3 cm3 mol-l), which is only 10% of the Li atomic volume a t  ambient pressure. 
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This is a relatively small value, which seems to  exclude a divacancy jump  mechanism 
(Mehrer 1978). However, whether a monovacancy or an interstitialcy (e.g. Mundy 
1971) mechanism causes diffusion cannot be descided on the basis of the present data.  

The two facts (i) that  the BCC-FCC phase transition occurs before the lattice 
has become rigid (as defined by NMR), and (ii) the enhancement of the diffusion 
coefficient at the phase transition seem to reflect the nature of this transition. Stager 
and Drickamer (1963) studying the effect of pressure on the resistance of some alkali 
metals, were the first t o  detect the phase transition in Li. At 296 K,  they observed 
that  the resistance rises to  a maximum value at  7 GPa  and then drops abruptly. At 
77 K the drop in resistance was found to  be smeared out. This effect was attributed t o  
a possible first order, diffusion-controlled phase transition. Olinger and Shaner (1983) 
showed by x-ray diffraction that the transition consists of a BCC-FCC transformation 
taking place at 6.9 G P a  and 296 K. Our results seem to support the suggestion of the 
diffusion-controlled transition. 

For N a  the only reliable diffusion coefficients are those a t  3.2 and 4.0 GPa  for 
the following reasons. At pressures below 3.2 G P a  the measured linewidth Sv(p) is 
too large because of the magnetic inhomogeneities, hence T comes out too large and 
therefore D would be too small. At pressures above 5 GPa SvRL(p) agrees with the 
experimental value Sv(p) within the error bars (compare figure l),  hence the calculated 
T values are highly uncertain. At 3.2 G P a  we obtain a diffusion coefficient of 1 . 1 ~  
m2 s-'. 

Mundy (1971) has measured the pressure dependence of the 22Na diffusion coef- 
ficient up to  1 GPa by the radio-tracer method. His 1nD-p plot exhibits a curvature 
typical for materials where several diffusion processes are operative. Mundy's value 
for 1 G P a  is 2 x m2 s-'. Mundy could determine three activation volumes: 
70, 70 and 30% in the order of increasing pressure. If we assume the curvature to  
continue t o  higher pressures, our value for D at  3.2 GPa is in reasonable agreement 
with the extrapolation. Application of equation (12) to  the values of the diffusion 
coefficients a t  1 and 3.2 G P a  (Mundy's and our value, respectively) yields an average 
value 8 x m3 for AV,. This is 20% of the Na atomic volume at  ambient, pressure 
and seems to  point to  a decrease of the activation volume with increasing pressure. 

4. Knight shift: results and discussion 

4.1. Results 

Figure 3 shows the pressure dependence of AV which is the shift of the NMR frequency 
v,(p) a t  pressure p with respect to  the frequency a t  ambient pressure. For Na we 
have included the results of Benedek and Kushida (1958). The error bars get larger 
with rising pressure because of the increasing linewidth. 

For Li, Au is roughly proportional to  pressure up to  the phase transition. This 
result agrees qualitatively with that of Kushida and Murphy (1980) but disagrees with 
the old data  of Benedek and Kushida (1958) who obtained a negative slope for the 
Av-p curve. At the BCC-FCC phase transition the frequency shift becomes negative 
and stays about constant in the FCC phase. For Na,  our data agree with those of 
Benedek and Kushida (1958), who measured up to  about 1 GPa.  Around 1.5 G P a  the 
shift is about constant and then increases with rising pressure. 



7918 R Bertana et a1 

I " " " '  

-2 I 

P P I  
bcc 1 fcc 

1 

I O  -3b " 2 " 4 " 6 I '  8 " 

<.lot 
I L1 

095F 

b 

0 9  0.8 0 7  
0.90' ' ' ' ' ' ' 1 

1.0 
pressure [GPO] 

v ( P I / V ( O )  

0.5 I Na ! !  - 
-0,51%:*T+$++,p , P I  , , 

2 4 6 
-l.oo 

pressure [GPO] 

I " " " '  I 

t o t /  Na 

0.981 I 
1 .o 0.9 0.8 0.7 0.6 

v ( P I / V ( O I  

Figure 3. Pressure dependence of the shift of 
the NMR frequency of 'Li in Li (above) and 23Na 
in Na (below) with respect to the corresponding 
frequency at ambient pressure. The full circles 
denote the results of Kushida and Murphy (1980) 
for Li and of Benedek and Kushida (1958) for Na. 

Figure 4. The relative Knight shift (see equ& 
tion (3)) of 7Li in Li (above) and 23Na in Na 
(below) as a function of the relative volume 
V(p) /V(O)  of the unit cell at pressure p with V ( 0 )  
being the volume at ambient pressure. 

For further discussions i t  is useful to  convert the resonance shift data  into relative 
Knight shifts K(p)/Ii'(O) according to  equation (3). In figure 4 these results are plotted 
as a function of the relative volume V(p)/V(O). 

To our knowledge, detailed theoretical treatments of the volume dependence of the 
Knight shift have only been published by Wilk and Vosko (1981) and only for volume 
changes smaller than 10%. We therefore compare these theoretical values with our 
data  in figure 5 .  For lithium we have also included the experimental data of Kushida 
and Murphy (1979), who measured the shift a t  89 OC where the Li signal is very 
narrow and hence the error bars very small (they are smaller than the symbols used). 
Their data  are smaller than ours, a t  least for relative volumes V(p)/V(O) smaller than 
about 0.95%. The origin of this discrepancy is not known. 

4.2 .  Volume dependence of Knight shaft 

We briefly summarize some theoretical results pertinent to the volume dependence 
of the Knight shift. Earlier interpretations of experimental Knight shift data  took 
into account only contributions of the hyperfine Hamiltonian of Fermi surface valence 
electrons (cf. Winter 1971). A contribution which is usually dominating the others 
(as in Li and Na)  comes from the Fermi contact term and can be written as 

where xp is the electron spin susceptibility (per unit volume), and PF is the square of 
the valence electron wave function (evaluated a t  the nucleus) averaged over the Fermi 
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Figure 5. Volume dependence of the relative 
Knight shift of 7Li in Li (above) and 23Na in 
Na (below). Full circles: this work; open cir- 
cles: data of Kushida and Murphy (1980); full 
and open triangles: theoretical values of Wilk 
and Vosko (1981) accodng to equation (13) and 
(14), respectively. 
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Figure 6. Comparison of experimental data 
(circles) for the volume dependence of the rel- 
ative spin density (given by equation (17)) at 
the nucleus of 7Li in Li (figure 6(a)) and 23Na 
in Na (figure 6 ( b ) )  with theoretical values (full 
curves). Full circles: this work; open circles: 
data of Kushida and Murphy (1980); M: Mahanti 
(1974); W: Wilk and Vosko (1981); A: Asano and 
Yamashi ta (1 973). 

surface and normalized over the volume R, of the Wigner-Seitz cell. (The meaning of 
the index d standing for direct will become apparent shortly.) A second term due to 
the spin-dipole interaction vanishes in Li and Na because of the cubic site symmetry. 
A third term arising from orbital motion is expected to be small in Li and Na. 

Later on it became apparent that the exchange core-polarization contribution to 
the contact term can play an important role. Among the first to perform detailed cal- 
culations were Mahanti and Das (1971). Later Manninen and Jena (1980) calculated 
the pressure dependence of the Knight shift in Li and Na using the model of a single 
ion embedded in an electron gas (jellium model). A drawback of these calculations 
is that band structure effects which may become important (especially in Li) are not 
taken into account. 

A more recent treatment of the volume dependence of the Knight shift taking into 
account polarization and band structure effects was performed by Wilk and Vosko 
(1981). These authors write, for alkali metals, the total contribution of the Fermi 
contact interaction to the Knight shift as 
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where m(0) is the value a t  the nucleus of m ( ~ ) ,  the component of the total electron 
spin magnetic moment density along the direction of the external magnetic field B.  
IC, comprises contributions from all electrons (core and valence) that  have a non- 
vanishing probability of being found a t  the nucleus in contrast to  the direct term Ii'd 
(equation (13)) which is only due to  valence electrons a t  the Fermi surface. Wilk 
and Vosko (1981) have performed self-consistent spin-polarized calculations of m(r )  
within the framework of the spin density functional formalism. Especially in Li, the 
volume dependence of m( r )  is strongly affected by the volume dependence of the core 
contribution. 

The theoretical values given in figure 5 were calculated from first principles (Wilk 
and Vosko 1981). For I<d, this involved a separate calculation of xp and PF. We note 
that  the Li I<, values come into near agreement with the experimental data  of Kushida 
and Murphy (1979) except for the larger volume changes. For V(p)/V(O) 1 0.90 our 
data  are intermediate between the K ,  and ICd curves, while for much larger volume 
changes i t  is conceivable that our results favour an extrapolation of the KS curve. It 
is obvious that  for the high pressure range we need both more precise experimental 
data  and an extension of the theoretical calculations. 

For N a  the Wilk and Vosko results deviate appreciably from the experimental data  
of both Benedek and Kushida (1958) and this work which both are in agreement. Wilk 
and Vosko (1981) attributed this discrepancy to  unknown non-local corrections to  the 
exchange-correlation energy functional. 

4.3. Volume dependence of spin density 

As just  mentioned, a direct comparison of theoretical and experimental Knight shifts 
is not possible. Nevertheless, we can draw from our data some conlusions concerning 
the volume dependence of the electron spin density a t  tmhe nucleus. For the following 
discussion we use the expression for the Knight shift given by Mahant,i and Das (1971): 

KS = ( 8 ~ / 3 ) x f i P F  (15) 

with 

Here, x; = xPac is the atomic susceptibility. PF ha,s the same meaning as in equa- 
tion (13). The terms Pi? define additional effective densities a t  the nucleus arising 
from the exchange core polarization effect and associated with the Ith angular com- 
ponent of the conduction electrons at  the Fermi surface. 

If the pressure (volume) dependence of the electron spin susceptibility xp is known, 
equation (15) together with the experimental Knight shift data  gives directly the 
pressure dependence of the spin density a t  the nucleus: 

For Li and Na,  x ; ( p )  has been measured up to  0.8 G P a  (Kushida et a1 1976) corre- 
sponding to  a relative volume V(p)/V(O) of about 0.90. We have extrapolated these 
values to  the smallest volumes we have attained in the following way. In a jellium 
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model which is appropriate for Na,  the Pauli susceptibility xp is enhanced with re- 
spect t o  the free electron gas value, xF. Kushida e t  al  (1976) have shown that in the 
volume range they studied, the ratio xP/xF depends only weakly on the Wigner-Seitz 
radius. This amounts t o  a change of xP/xF by about 2% for the pressure range we 
have used. For Na we therefore assume x$ to  be proportional to  V ( P ) ~ / ~  in the whole 
pressure range. In the case of Li the free electron gas approximation cannot be used. 
However, x$ depends only very weakly on V ( p ) .  We therefore have made a linear 
extrapolation up to  the phase transition. 

In figure 6 we have plotted equation (17) together with the da t a  of Kushida and 
Murphy (1980) and some theoretical results. As one would expect, for both Li and 
Na pressure increases the spin density a t  the nucleus. The increase of the Li Knight 
shift with rising pressure is mainly due to this increase of PF(p)/PF(O). The peculiar 
behaviour of the Na Knight shift. is the result of the different pressure behaviour of 
the atomic susceptibility (decrease with rising pressure) and PF(p)/PF(O) (increase 
with pressure). At a pressure where the different tendencies cancel, the slope of the 
K , ( p ) / K , ( O )  curve must change its sign; this happens around V(p)/V(O) = 0.84. 

We now turn to  the theoretical data  of figure 6. As to  Li, we note that  Asa.no and 
Yamashita (1973), who calculated the spin density by means of the Korringa-Kohn- 
Rostoker (KKR) method taking into account the conduction electron contribution only, 
obtain a curve which is too steep compared to the experimental data.  Wilk and 
Vosko (1981) who included exchange effects and considered the crystal structure, get 
a better agreement with experiment. Finally, Mahanti (1974) estimated the volume 
dependence of the spin density by analyzing the influence of the s and p character 
of the conduction electron wave function on core polarization. He concluded that  
the p character has to  increase on account of the s character with rising pressure. 
Though Mahanti’s estimation, which is in good agreement with the experiments, is 
valid only for small volume changes it is tempting to  suppose that the decrease of 
the s character continues up to  higher pressures and one might speculate that  i t  even 
undergoes a drastic reduction a t  the phase transition. This would be in agreement 
with the observed drop of the Knight shift. 

Since the Knight shift is a product of both the spin density and the Pauli suscepti- 
bility one must also consider a possible change of the latter quantity a t  the BCC-FCC 
phase transition. Unfortunately there is no experimental or theoretical work about 
this problem. We believe that the theory of Wilk et al. (1979) about the pressure 
dependence of xp a t  lower pressures which takes account of band st,ructure effects and 
which is in excellent agreement with the experiments of Kushida et, al. (1976), could 
yield the xp contribution to  the Knight shift reduction at  the phase transition. 

Figure 6 ( b )  shows our N a  Knight shift results together with theoretical da t a  of 
Asano and Yamashita (1973) and Wilk and Vosko (1981). In this case the latter 
data  lie below the experimental results in contrast to  the case of Li. We believe that 
the agreement of the Asano-Yamashita data  with experiment is fortuitous since these 
calculations depend very sensitively on the crystal potential used. 

5 .  Conclusions 

We have measured a t  room temperature the linewidth and the Knight shift of the 7Li 
and 23Na NMR signals a t  pressures up to  8 and 6 GPa ,  respectively. From the linewidth 
data  we have concluded that increasing pressure progressively hinders diffusion. In 
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Li, the hindrance is weaker and the BCC-FCC phase transition seems to be diffusion- 
controlled; diffusion in the high-pressure FCC phase is larger than in the low-pressure 
BCC phase. The Li and N a  diffusion coefficients have been calculated and a rough 
estimate of the activation volumes has been made. 

The Knight shift data at  pressures up to 1 GPa agree quantitatively with earlier 
data of Benedek and Kushida (1958) for Na. For Li there is qualitative agreement with 
results of Kushida and Murphy (1980) showing that the shift definitely increases with 
rising pressure. The increase continues up to the BCC-FCC phase transition where 
the shift jumps to  values below the ambient pressure value of the BCC phase. The 
N a  Knight shift decreases up to about 1.7 GPa and then steadily increases up to  the 
highest pressure (6.2 GPa). This behaviour is explained in terms of different pressure 
dependences of the atomic susceptibility and the spin density at the nuclear site. 

The Knight shift data have been compared with various theoretical predictions that 
take into account core polarization effects. For Li, the large errors of the present data 
at high pressure do not yet make i t  possible to  distinguish between extrapolations of 
various models which exist only for a volume decrease of 10%. For Na, there is striking 
disagreement with theory. 

By extrapolating experimental values for the Pauli susceptibility (Kushida et a1 
1976) we have estimated the pressure dependence of the spin density at the nuclear site. 
For Li these estimates support considerations of Mahanti (1974) who took into account 
the influence of the s and p character of the conduction electron wave function on core 
polarization. Based on these results one may speculate that the drastic reduction of 
the Knight shift at  the phase transition arises, as well as from a possible change of 
the Pauli susceptibility from a pronounced change of the wave function character. 

Our results clearly indicate the need for both improved and more precise experi- 
ments which are in progress in our laboratory and an extension of present Knight shift 
theories to  higher pressures. 
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